[3] J. Transfiguracion, A. P. A. P. Manceur, E. Petiot, C. M. C. M. C. M. Thompson,
and A. A. A. Kamen, “Particle quantification of influenza viruses by high perfor-
mance liquid chromatography,” Vaccine, vol. 33, no. 1, pp. 78–84, Jan. 2015, doi:
10.1016/j.vaccine.2014.11.027
[4] S. Heider and C. Metzner, “Quantitative real-time single particle analysis of vir-
ions,” Virology, vol. 462-463C, no. 1, pp. 199–206, Jul. 2014, doi: 10.1016/j.virol.2
014.06.005
[5] K. O. Smith and J. L. Melnick, “Electron microscopic counting of virus particles by
sedimentation on aluminized grids,” J. Immunol., vol. 89, no. 2, pp. 279 LP–284,
Aug. 1962.
[6] S. Payne, “Methods to study viruses,” Viruses, pp. 37–52, 2017, doi: 10.1016/b978-
0-12-803109-4.00004-0
[7] A. A. Kojabad et al., “Droplet digital PCR of viral DNA/RNA, current progress,
challenges, and future perspectives,” J. Med. Virol., vol. 93, no. 7, pp. 4182–4197,
2021, doi: 10.1002/jmv.26846
[8] A. Roldão, R. Oliveira, M. J. T. Carrondo, and P. M. Alves, “Error assessment in
recombinant baculovirus titration: Evaluation of different methods,” J. Virol.
Methods, vol. 159, no. 1, pp. 69–80, 2009, doi: 10.1016/j.jviromet.2009.03.007
[9] A. L. Masci, E. B. Menesale, W.-C. Chen, C. Co, X. Lu, and S. Bergelson,
“Integration of fluorescence detection and image-based automated counting in-
creases speed, sensitivity, and robustness of plaque assays,” Mol. Ther. – Methods
Clin. Dev., vol. 14, pp. 270–274, Sep. 2019, doi: 10.1016/j.omtm.2019.07.007
[10] B. Y. G. K. Hirst, “The quantitative determination of influenza virus and antibodies
by means of red cell agglutination,” J. Exp. Med., vol. 75, no. 1, pp. 49–64, 1942.
[11] L. Durous et al., “SPRi-based hemagglutinin quantitative assay for influenza vac-
cine production monitoring,” Vaccine, vol. 37, no. 12, pp. 1614–1621, Mar. 2019,
doi: 10.1016/j.vaccine.2019.01.083
[12] F. Schmeisser, A. Vasudevan, J. Soto, A. Kumar, O. Williams, and J. P. Weir, “A
monoclonal antibody-based immunoassay for measuring the potency of 2009 pan-
demic influenza H1N1 vaccines,” Influenza Respi. Viruses, vol. 8, no. 5,
pp. 587–595, 2014, doi: 10.1111/irv.12272
[13] T. Bousse et al., “Quantitation of influenza virus using field flow fractionation and
multi-angle light scattering for quantifying influenza A particles,” J. Virol. Methods,
vol. 193, no. 2, pp. 589–596, Nov. 2013, doi: 10.1016/j.jviromet.2013.07.026
[14] P. C. Stepp, K. A. Ranno, E. D. Dawson, K. L. Rowlen, and M. M. Ferris,
“Comparing H1N1 Virus quantification with unique flow cytometer and quantitative
PCR,” Bioprocess Int., vol. 9, no. 8, pp. 50–56, 2011.
[15] C. A. Rossi et al., “Evaluation of ViroCyt®Virus counter for rapid filovirus quan-
titation,” Viruses, vol. 7, no. 3, pp. 857–872, 2015, doi: 10.3390/v7030857
[16] R. Vogel et al., “Quantitative sizing of nano/microparticles with a tunable elasto-
meric pore sensor,” Anal. Chem., vol. 83, no. 9, pp. 3499–3506, 2011, doi: 10.1021/
ac200195n
[17] R. Vogel et al., “A standardized method to determine the concentration of extra-
cellular vesicles using tunable resistive pulse sensing,” J. Extracell. Vesicles, vol. 5,
no. 1, 2016, doi: 10.3402/jev.v5.31242
[18] P. Kramberger, M. Ciringer, A. Štrancar, and M. Peterka, “Evaluation of nano-
particle tracking analysis for total virus particle determination,” Virol. J., vol. 9,
p. 265, Jan. 2012, doi: 10.1186/1743-422X-9-265
[19] Z. Wei et al., “Biophysical characterization of influenza virus subpopulations using
field flow fractionation and multiangle light scattering: correlation of particle
counts, size distribution and infectivity,” J. Virol. Methods, vol. 144, no. 1–2,
pp. 122–132, Sep. 2007, doi: 10.1016/j.jviromet.2007.04.008
Analytics and virus production processes
221